Простой приемник коротковолника-наблюдателя, для приема сигналов радиолюбительских станций обычные массовые радиовещательные приемники непригодны без их настолько существенной модернизации, что проще построить приемник заново. Дело даже не в их низкой чувствительности и излишне широкой полосе пропускания, а в том, что они рассчитаны на прием амплитудно-модулированных (АМ) сигналов.
Любители же давно отказались от АМ ввиду ее низкой эффективности и используют на коротких волнах (КВ) исключительно телеграф (CW) или однополосную модуляцию (SSB) речевым сигналом. По этой причине и приемник должен проектироваться на совершенно иных принципах. В частности, в нем не нужен амплитудный детектор, а основное усиление целесообразно сделать на низких, звуковых частотах, где это гораздо проще и дешевле. И конечно, автор этого приемника, широко известен в радиолюбительских кругах, а именно В. Поляков.
CW сигнал представляет собой короткие и длинные посылки немодулированной несущей частоты, лежащей в одном из радиолюбительских диапазонов, в нашем случае 1,8…2 МГц (160 метров). Чтобы сигнал зазвучал привычной мелодией азбуки Морзе, его высокую частоту необходимо преобразовать вниз, в диапазон ЗЧ. Это делает установленный на входе приемника (смотрим блок схему), сразу после входного фильтра Z1, преобразователь частоты, содержащий смеситель U1 и маломо1цный вспомогательный генератор — гетеродин G1.
Предположим, мы хотим принять CW сигнал на частоте 1900 кГц. Настроив гетеродин на частоту 1901 кГц, мы получим на выходе смесителя сигналы суммарной (3801 кГц) и разностной (1 кГц) частот. Суммарная частота нам не нужна, а сигнал разностной, звуковой частоты отфильтруем (Z2), усилим в УЗЧ А1 и подадим на телефоны BF1. Как видите, приемник действительно очень прост.
SSB сигнал представляет собой тот же звуковой, но со спектром, перенесенным в область радиочастот. На низкочастотных любительских диапазонах (160, 80 и 40 метров) спектр SSB сигнала еще и инвертирован (излучается нижняя боковая полоса, LSB). Это значит, что при несущей частоте SSB сигнала 1900 кГц его спектр простирается от 1897 до 1899,7 кГц, т. е. 1900 кГц — (0,3….3 кГц). Подавляемая верхняя боковая (USB) занимает полосу частот 1900,3… 1903 кГц, как видно на спектрограмме (рисунке). Излучаемая LSB выделена утолщенными линиями. Для приема этого сигнала достаточно настроить гетеродин точно на частоту 1900 кГц.
Гетеродинный приемник изобрели еще на заре радиотехники, ориентировочно в 1903 году, когда еще не было ни ламп, ни других усилительных приборов, но уже были антенны, телефоны и генераторы незатухающих колебаний (дуговые, электромашинные). Последующее десятилетие для слухового приема телеграфных сигналов применялись исключительно гетеродинные приемники. Затем были изобретены ламповый регенератор, или аудион (1913 г.), супергетеродин (1917 г.), кстати, получивший свое название от гетеродинного приемника, широко стали использовать АМ, и о гетеродинных приемниках прочно и надолго забыли.
Возродили эту технику радиолюбители в 60—70-х годах прошлого века, доказав на практике, что приемник на трех-четырех транзисторах может принимать радиостанции всех континентов, работая не хуже больших многоламповых аппаратов. Но название стало другим — приемник прямого преобразования (Direct Conversion Receiver, DCR), чем подчеркивался факт непосредственного преобразования (именно преобразования, а не детектирования) частоты радиосигнала в низкую звуковую частоту.
Снова обращаясь к блок схеме, поясним назначение фильтров. Входной полосовой фильтр Z1 ослабляет мощные внеполосные сигналы служебных и радиовещательных станций, которые могут создавать помехи. Его полоса пропускания может равняться ширине любительского диапазона, а если она уже, фильтр делают перестраиваемым. Ослабляет он и побочные каналы приема, возможные на гармониках гетеродина. Фильтр Z2 — это ФНЧ, пропускающий только “телефонную” полосу звуковых частот ниже примерно 3 кГц. Самые же низкие частоты, ниже 300 Гц, достаточно ослабляются разделительными конденсаторами в УЗЧ.
Фильтр Z2 определяет селективность приемника: сигналы радиостанций, расположенных далее 3 кГц от частоты гетеродина, создают на выходе смесителя частоты выше 3 кГц, следовательно, будут эффективно отфильтрованы в ФНЧ. К селективности приемника добавляется и селективность телефонов, плохо воспроизводящих частоты выше 2,5…3 кГц, и естественная селективность человеческого слуха, прекрасно различающего тон сигналов и выделяющего полезный сигнал на фоне помех — ведь если частоты различаются в радиодиапазоне, после преобразования они будут различаться и в звуковом диапазоне. Ничего этого нет и в помине в АМ приемниках с детектором — ему все равно, какие сигналы детектировать (на частоту он не реагирует), в результате все сигналы, прошедшие через радиотракт, создают помехи.
К недостаткам гетеродинного приемника относится двухполосный прием: в нашем примере приема CW сигнал помехи с частотой 1902 кГц также даст разностную частоту 1 кГц и будет принят. Иногда такую помеху удается устранить. Дело в том, что на сигнал с частотой 1900 кГц возможны две настройки — верхняя (частота гетеродина равна 1901 кГц) и нижняя (1899 кГц). Если помеха слышна при одной настройке, то, возможно, ее не будет при другой. На SSB сигнал возможна только одна настройка — 1900 кГц, но все сигналы с частотами 1900… 1903 кГц будут создавать помехи (см. рис. 2) и устранить их нельзя. Этот недостаток существенен только при приеме в “pile—up”, когда на близких частотах “сбились в кучу” множество станций, услышав, например, редкого “DX”. При обычном же приеме, когда станций немного и между их частотами есть значительные промежутки, этот недостаток совершенно незаметен. Принципиальная схема простой приемник коротковолника-наблюдателя показана на рисунке.
Входной сигнал от антенны через конденсатор связи С1 небольшой емкости поступает на двухконтурный полосовой фильтр. Первый контур фильтра L1C2C3C4.1 имеет относительно высокую добротность и, следовательно, узкую полосу пропускания, поэтому он перестраивается по частоте с помощью одной секции сдвоенного КПЕ С4.1. Второй контур L2C7 перестраивать нет необходимости, поскольку он сильно нагружен смесителем, его добротность ниже, а полоса пропускания шире, поэтому он не перестраивается и пропускает всю полосу частот 1,8…2 МГц.
Смеситель приемника собран на двух диодах VD1 и VD2, включенных встречно-параллельно. Через конденсатор С8 (он же входит и в ФНЧ) на смеситель подается напряжение гетеродина с отвода катушки L3. Гетеродин перестраивается в полосе частот 0,9…1 МГц другой секцией КПЕ — С4.2. Как видим, частота гетеродина вдвое ниже частоты сигнала, что необходимо по самому принципу действия смесителя. Работает он следующим образом. Для открывания кремниевых диодов необходимо напряжение около 0,5 В, а амплитуда гетеродинного напряжения, подаваемого на диоды, едва достигает 0,55…0,6 В. В результате диоды поочередно открываются только на пиках положительной и отрицательной полуволн гетеродинного напряжения, т. е. дважды за период.
Так происходит коммутация сигнальной цепи с удвоенной частотой гетеродина. Смеситель особенно удобен для гетеродинных приемников, поскольку сигнал гетеродина практически не излучается антенной, сильно ослабляясь входным фильтром, и не создает помех ни окружающим (этим грешили первые гетеродинные приемники, в которых гетеродин работал на частоте сигнала и подавить его излучение было нелегко), ни собственному приему. Гетеродин выполнен по схеме “индуктивной трехточки” на транзисторе VT1. Его контур L3C6C5C4.2 включен в коллекторную цепь транзистора, а сигнал обратной связи поступает через конденсатор С9 в эмиттерную цепь. Необходимый ток смещения базы задается резистором R1, зашунтированным для токов высокой частоты конденсатором С10.
Преобразователь спроектирован так, что не требует кропотливой работы по подбору оптимального напряжения гетеродина на диодах смесителя. Этому способствует легкий режим работы гетеродина при малом напряжении коллектор—эмиттер транзистора (около 1,5 В) и малом коллекторном токе — менее 0,1 мА (обратите внимание на большое сопротивление резистора R2). В этих условиях гетеродин возбуждается легко, но как только амплитуда колебаний возрастет до примерно 0,55 В на отводе катушки, диоды смесителя открываются на пиках колебаний и шунтируют контур гетеродина, ограничивая дальнейший рост амплитуды. ФНЧ приемника C8L4C11 — это простейший П-образный фильтр третьего порядка, обеспечивающий крутизну ската 18 дБ на октаву (двукратное увеличение частоты) выше частоты среза 3 кГц.
УЗЧ приемника двухкаскадный, он собран на малошумящих транзисторах VT2 и VT3 серии КТ3102 с высоким коэффициентом передачи тока. Для упрощения усилителя использована непосредственная связь между каскадами. Сопротивления резисторов выбраны так, что режим транзисторов по постоянному току устанавливается автоматически и мало зависит от колебаний температуры и питающего напряжения. Ток транзистора VT3, проходя через резистор R5, включенный в эмиттерную цепь, вызывает на нем падение напряжения около 0,5 В, достаточное для открывания транзистора VT2, база которого подключена через резистор R4 к эмиттеру VT3. В итоге, открываясь, транзистор VT2 понижает напряжение на базе VT3, предотвращая дальнейший рост его тока.
Другими словами, УЗЧ охвачен стопроцентной отрицательной обратной связью (ООС) по постоянному току, жестко стабилизирующей его режим. Этому способствуют относительно большое (по сравнению с общепринятыми) сопротивление коллекторной нагрузки VT1 — резистора R3 и малое — резистора R4. На переменном токе звуковых частот ООС не действует, поскольку они замыкаются через блокировочный конденсатор большой емкости С15. Последовательно с ним включен переменный резистор R6 — регулятор громкости. Вводя некоторое сопротивление, мы тем самым создаем и некоторую ООС, снижающую усиление. Такой способ регулирования громкости хорош тем, что регулятор установлен в цепи уже усиленного сигнала и не требует экранирования. К тому же вводимая ООС снижает и без того небольшие искажения сигнала в усилителе. Недостаток — громкость регулируется не до нуля, но обычно это и не нужно. Телефоны включаются в коллекторную цепь транзистора VT3 (через разъем XS3), через их катушки протекает и переменный ток сигнала, и постоянный ток транзистора, что дополнительно подмагничивает телефоны и улучшает их работу. Налаживания УЗЧ не требует.
О деталях. Подбор их начинайте с головных телефонов. Нужны обычные телефоны электромагнитной системы с жестяными мембранами, обязательно высокоомные, с общим сопротивлением постоянному току 3,2…4,4 кОм (от телефонных аппаратов не годятся — они низкоомные). Автор использовал телефоны ТА-56м с сопротивлением каждого 1600 Ом (указывается на корпусе). Годятся также ТА-4, ТОН-2, ТОН-2м, еще выпускаемые заводом “Октава”. В этом приемнике нельзя использовать миниатюрные наушники от плееров, имеющие низкую чувствительность.
Вилка включения телефонов заменяется стандартным круглым трех- или пятиштырьковым разъемом от звуковоспроизводящей аппаратуры. Между выводами 2 и 3 штырьковой части разъема устанавливают перемычку, которая служит для подключения батареи питания GB1. При отсоединении телефонов батарея будет отключаться автоматически. Бывший плюсовый вывод шнура телефонов соединяется со штырьком 2, это обеспечит сложение магнитных потоков, создаваемых током подмагничивания и постоянными магнитами телефонов.
Следующая ответственная деталь — КПЕ. Использовать КПЕ без верньера можно, прием CW станций при этом проблем не вызовет, а вот точная настройка на SSB станции будет затруднена, поскольку плотность настройки 400 кГц на оборот великовата. Подберите ручку настройки максимального диаметра или сконструируйте верньер самостоятельно, используя подходящий шкив и тросик. КПЕ с воздушным диэлектриком лучше, но годятся и малогабаритные КПЕ с твердым диэлектриком от транзисторных приемников. Часто они уже оснащены шкивами верньера. Емкость конденсатора некритична, необходимое перекрытие диапазона можно подобрать “растягивающими” конденсаторами СЗ, С5 (их емкости должны быть одинаковы) и С2, С6 (емкости также одинаковы).
Катушки приемника намотаны на стандартных трехсекционных каркасах, используемых в транзисторных приемниках. Если у каркасов четыре секции, ближняя к основанию секция не используется. Витки равномерно распределяются во всех трех секциях каркаса, намотка ведется “внавал”. Каркасы оснащены ферритовыми подстроечниками диаметром 2,7 мм. Подойдет провод ПЭЛ диаметром 0,12— 0,15 мм, но желательно применить ПЭЛШО, а еще лучше — литцендрат, скрученный из нескольких (5—7) проводников ПЭЛ 0,07—0,1 или готовый литцендрат в шелковой оплетке, например, ЛЭШО 7×0,07.