Цифровой LC-метр удобный для испытания оборудования

Цифровой LC-метр

Цифровой LC-метр удобный для испытания оборудования, который вы можете сделать для себя для измерения индуктивности и емкости в широком диапазоне. Цифровой LC-метр основан на оригинальной методике измерений, обеспечивает удивительную точность и прост в сборке. Многие современные цифровые мультиметры имеют широкие диапазоны измерения емкости, особенно в дорогих моделях.

Цифровой LC-метр

Поэтому нетрудно измерить значение конденсаторов, если их значение превышает 50 пФ или около того. Ниже этого уровня цифровые мультиметры не очень полезны для измерения емкости. Конечно, существуют специальные цифровые измерители емкости, которые обычно измеряют до нескольких пФ или около того. Но если вы хотите измерить такие вещи, как паразитная емкость, они тоже имеют ограниченное применение. Еще хуже, когда дело доходит до измерения индуктивности. Очень немногие цифровые мультиметры имеют способность измерять индуктивность, поэтому во многих случаях приходится использовать мост индуктивности старого типа или измеритель Q. Оба они в основном являются аналоговыми приборами и не предоставляют ни высокого разрешения, ни особенно высокой точности.

Это отличается от профессионалов, которые в течение последнего времени могли использовать цифровые измерители LCR. Они позволяют быстро и автоматически измерять практически любой пассивный компонент, часто измеряя не только их первичный параметр (например, индуктивность или емкость), но и один или несколько вторичных параметров. Тем не менее, многие из этих приборов имеют высокую цену, благодаря микроконтроллерной технологии эта ситуация несколько изменилась за последние несколько лет, и теперь стали гораздо более доступны цифровые приборы. К ним относятся как профессиональные, так и самодельные приборы, а также устройство, описанное здесь.

Основные особенности цифровой LC-метр

Как показано на рисунке в тексте, наш новый цифровой LC-метр очень компактен. Он прост в сборке, имеет жидкокристаллический дисплей и его можно разместить в небольшом корпусе. Себестоимость цифровой LC-метр не высока так что каждый желающий может это себе позволить. Несмотря на свою скромную цену, цифровой LC-метр предлагает автоматическое прямое цифровое измерение в широком диапазоне емкости (C) и индуктивности (L) с разрешением в 4 знака. Фактически, он измеряет емкость от 0,1 до 800нФ и индуктивность от 10 до 70мГн. Точность измерения также удивительно хорошая, лучше, чем ± 1% от показаний. Цифровой LC-метр работает от 9В до 12В постоянного тока, потребляя в среднем ток менее 20 мА. Это означает, что он может питаться от 9В батареи встроенной в корпус или от внешнего блока питания.

Как работает цифровой LC-метр

Впечатляющие характеристики цифровой LC-метр зависят от оригинальной методики измерений, разработанной около 12 лет назад Нилом Хехтом из штата Вашингтон в США. Он использует тестовый генератор широкого диапазона, частота которого изменяется путем подключения неизвестной индуктивности или конденсатора, которую вы измеряете.

Измерение цифровой LC-метр

Результирующее изменение частоты измеряется микроконтроллером, который затем вычисляет значение компонента и отображает его непосредственно на жидкокристаллическом дисплее. Так что в приборе в основном только две ключевые части: (1) сам тестовый генератор и (2) Микроконтроллер, который измеряет его частоту (с измеряемым компонентом и без него) и вычисляет значение компонента. Для достижения надежной генерации в широком частотном диапазоне тестовый генератор основан на аналоговом компараторе с положительной обратной связью смотрим на рисунке. Эта конфигурация имеет естественную склонность к генерации из-за очень высокого усиления между входом и выходом компаратора. При первом включении питания (+ 5 В) неинвертирующий (+) вход компаратора удерживается при половине напряжения питания (+2,5) V делителем смещения, образованным двумя резисторами сопротивлением 100к.

Однако напряжение на инвертирующем входе изначально равно нулю, поскольку конденсатору 10мФ на этом входе требуется время для зарядки через резистор обратной связи сопротивлением 47к. Таким образом, с неинвертирующим входом, намного более положительным, чем его инвертирующий вход, компаратор первоначально переключает свой выходной сигнал на высокий уровень (т. е. на + 5 В). Как только это происходит, конденсатор 10 мФ на инвертирующем входе начинает заряжаться через резистор 47к и таким образом, напряжение на этом входе возрастает экспоненциально. Как только оно поднимается немного выше уровня + 2,5 В, выход компаратора внезапно переключается на низкий уровень. Это низкое напряжение подается обратно на неинвертирующий вход компаратора через резистор обратной связи сопротивлением 100к. Он также подключен через входной конденсатор 10 мФ к настроенной цепи, образованной индуктивностью L1 и конденсатором C1. Это вызывает генерацию на своей резонансной частоте.

Измерение цифровой LC-метр.

В результате компаратор и настроенная схема теперь функционируют как генератор на этой резонансной частоте. Фактически, компаратор эффективно функционирует как «отрицательное сопротивление» во всей схеме, чтобы компенсировать его потери и поддерживать колебания. Как только возникла генерация, то на выходе компаратора появляется прямоугольные импульсы той же частоты, именно эта частота (Fout) измеряется микроконтроллером. На практике, прежде чем что-либо еще будет подключено к цепи, Fout просто соответствует резонансной частоте L1, C1 и любой паразитной емкости, которая может быть связана с ними. Когда частота сначала подается на измеритель, микроконтроллер измеряет эту частоту (F1) и сохраняет его в памяти. Затем он запитывает герконовое реле RLY1, которое переключает конденсатор C2 параллельно с C1 и, таким образом, изменяет частоту генератора (то есть понижает ее). Микроконтроллер измеряет и сохраняет эту новую частоту (F2). Затем микроконтроллер использует эти две частоты плюс значение C2 для точного расчета значений как C1, так и L1. Если вам интересно, уравнения, которые он использует для этого, показаны на рисунке (Режим калибровки). После этих вычислений микроконтроллер снова выключает реле RLY1 для отключения конденсатора C2 из контура, позволяя частоте генератора вернуться к F1. Теперь прибор готов к измерению неизвестной индуктивности или конденсатора (Cx или Lx).

Как показано на рисунке, неизвестный компонент подключается через тестовые клеммы. Затем он подключается к настроенной цепи генератора через переключатель S1. При измерении неизвестного конденсатора S1 переключается в положение «C», так что конденсатор подключается параллельно C1. В качестве альтернативы для неизвестной индуктивности S1 переключается в положение «L», так что бы индуктивность соединялась последовательно с L1. В обоих случаях добавленные значения Cx или Lx снова вызывают изменение частоты генератора на новую частоту (F3). Как и в случае с F2, это всегда будет ниже, чем F1. Таким образом, измеряя F3, как и ранее, и отслеживая положение переключателя S1 (что осуществляется через соединение C / L на выводе 12 IC1), микроконтроллер может рассчитать значение неизвестного компонента, используя одно из уравнений, показанных в нижней части поля уравнений – т. е. раздел с надписью: «В режиме измерения».

Уравнения вычисления

Из этих уравнений вы можете видеть, что микроконтроллер имеет довольно максимальное «сжатие чисел», как в режиме калибровки, когда он вычисляет значения L1 и C1, так и в режиме измерения, когда он вычисляет значение Cx или Lx. Каждое из этих значений должно быть рассчитано с высокой степенью разрешения и точности. Для достижения этого в прошивке микроконтроллера необходимо использовать некоторые математические вычисления с 24-разрядными числами с плавающей запятой.

Так как эта оригинальная, но в то же время простая схема измерения используется для создания практичного прибора, видно из полной принципиальной схемы цифровой LC-метр высокой точности, показанной на рисунке. Это даже проще, чем вы могли бы ожидать, потому что нет отдельного компаратора, который сформировал бы ядро измерительного генератора. Вместо этого мы используем компаратор, встроенный в сам микроконтроллер (IC1). Как показано, микроконтроллер IC1 представляет собой PIC16F628A и фактически содержит два аналоговых компаратора, которые можно настраивать различными способами. Здесь мы используем компаратор 1 (CMP1) в качестве измерительного генератора. Компаратор 2 (CMP2) используется только для обеспечения некоторого дополнительного «возведения в квадрат» выхода CMP1, а затем его выход управляет внутренней схемой подсчета частоты. Схема генератора практически не отличается от схемы, показанной на рисунке.

Схема цифровой LC-метр

Обратите внимание, что IC1 управляет реле RLY1 (которое переключает калибровочный конденсатор C2 в цепь и из нее) через линию RB7 его порта ввода / вывода B (контакт 13). Диод D1 служит для защиты внутренней схемы микроконтроллера от индуктивных всплесков, когда реле выключается. Во время работы IC1 определяет, в каком положении находится переключатель S1 в режиме использования RB6 (вывод 12). Он поднимается вверх, когда S1b находится в положении «C» и в низ, когда S1b находится в положении «L». Кварц X1 (4 МГц) устанавливает тактовую частоту микроконтроллера IC1, в то время как соответствующие конденсаторы 33 пФ обеспечивают правильное согласование для обеспечения надежного запуска тактового генератора. Результаты вычислений микроконтроллера IC1 выводятся на стандартный 2 × 16 ЖК-модуль. Это управляется непосредственно через контакты портов RB0-RB5. Потенциометр VR1 позволяет настроить оптимальную контрастность ЖК-дисплея.

Прошивка микроконтроллера IC1 предназначена для автоматического выполнения функции калибровки сразу после первоначального включения. Однако это также может быть выполнено в любое другое время при нажатии кнопки S2. При нажатие этой кнопки микроконтроллер вынужден сброситься и запустить снова калибровку. Перемычки LK1 – LK4 не установлены при нормальной работе прибора, но используются для начальной настройки, тестирования и калибровки. Как показано, эти линии соединяются между RB3 и RB0 и землей соответственно. Например, если вы установили перемычку LK1, а затем нажали S2 для принудительного сброса, микроконтроллер активирует реле RLY1 (чтобы переключить конденсатор C2 в цепь) и измерить частоту генератора F2. Это тогда выводиться на ЖК-дисплее. Точно так же, если вы установили LK2 и нажали S2, микроконтроллер просто измеряет начальную частоту генератора (F1) и отображает ее на ЖК-дисплее. Это позволяет вам не только убедиться, что генератор работает, но также вы можете проверить его частоту. Мы еще расскажем об этом позже. Перемычки LK3 и LK4 позволяют выполнять ручную калибровку «подстройки» измерителя. Это полезно, если у вас есть доступ к конденсатору, значение которого очень точно известно (потому что он был измерен, например, с помощью профессионального тестера LCR).

 При установленном LK3 показание емкости уменьшается на небольшое значение каждый раз, когда оно составляет новое измерение (примерно пять раз в секунду). И наоборот, если вместо этого установлен LK4, микроконтроллер с небольшим шагом увеличивает показание емкости при каждом новом измерении. Каждый раз, когда вносятся изменения, поправочный коэффициент сохраняется в EEPROM микроконтроллера, и это значение калибровки затем применяется для будущих измерений. Также обратите внимание, что, хотя калибровка выполняется с использованием «стандартного» конденсатора, она также влияет на функцию измерения индуктивности. Короче говоря, идея состоит в том, чтобы установить перемычку на одну или другую (т. е. На LK3 или LK4) до верного считывания. Затем перемычка снимается. Как упоминалось выше, все перемычки LK1-LK4 не используются для нормальной работы. Они используются только для устранения неполадок и калибровки.

Питание для прибора поступает от внешнего источника постоянного тока от 9 до 12 В. Можно использовать любой подходящий сетевой блок питания либо, от внутренней батареи на 9 В. При подключенном сетевом источнике переключаемый разъем постоянного тока автоматически отключает батарею. Напряжение постоянного тока подается через диод защиты от обратной полярности D2 и выключатель питания S3. Стабилизатор REG1 – это стандартный пятивольтовый 7805. Выходное напряжение + 5В на выходе стабилизатора REG1 используется для питания IC1 и ЖК-модуля. Поскольку цифровой LC-метр использует так мало деталей, его очень легко собрать. Все детали, кроме переключателей S1-S3 и входных клемм Cx / Lx, смонтированы на плате, размером 125 × 58 мм. ЖК-модуль подключается к DIL-разъему 7 × 2 на одном конце платы и поддерживается на другом конце с помощью нейлоновых винтов и гаек M3. На рисунке показано расположение деталей на плате.

Проверка калибровка и настройка цифровой LC-метр.

Ваш LC-метр теперь готов к тестированию и калибровке. Сделать это, сначала подключите к устройству блок питания или щелочную батарею на 9 В, установите ползунковый переключатель S1 в положение «Емкость» и включите с помощью S3. Как только питание подано, на ЖК-дисплее должно появиться сообщение «Калибровка» на секунду или две, а затем на дисплее должно отобразиться «C = NN.N pF», где NN.N меньше 10 пФ. Если это произойдет, тогда ваш измеритель, вероятно, работает правильно, поэтому просто оставьте его на одну или две минуты, чтобы позволить тестовому генератору стабилизироваться. В это время показания емкости могут незначительно меняться на несколько десятых доли пикофарада, когда все успокаивается – это нормально. Теперь нажмите кнопку «Ноль» S2 на секунду или две и отпустите ее. Это заставляет микроконтроллер снова запускаться и перекалиброваться, поэтому вы снова кратко увидите сообщение «Калибровка», а затем «C = 0.0pF». Это указывает на то, что микроконтроллер уравновесил паразитную емкость и сбросил ее ноль.

Поиск проблем при настройке и запуске цифровой LC-метр

Если вы не получаете никаких сообщений, отображаемых на ЖК-дисплее, есть вероятность, что вы не подключили провод аккумулятора, либо поменяли полярность. Тщательно проверьте соединения питания. При включенном питании вы должны в состоянии измерить + 5В на контакте 14 IC1 относительно земли (0 В). В качестве альтернативы, если вы видите некоторые сообщения на ЖК-дисплее, но они не соответствуют описанию, пришло время проверить, что тестовый генератор измерителя работает нормально. Для этого выключите, установите перемычку с шунтом LK2 (т. е. на задней стороне платы), затем подайте питание и посмотрите на ЖК-дисплей. После сообщения «Калибровка», микроконтроллер должен отобразить восьмизначное число, которое представляет частоту генератора F1. Это должно быть примерно между 00042000 и 00058000, если ваши детали L1 и C1 находятся в пределах обычного допуска. Если значение, которое вы получаете для F1, равно «00000000», то ваш тестовый генератор не работает, и вам нужно будет выключить и искать причину. Возможные варианты включают не пропаянное соединения, плохая пайка, включающее один из компонентов генератора, или, возможно, крошечный кусочек припоя, соединяющий соседние дорожки или площадки.

печатная плата LC meter

Если вы видите частоту на дисплее в правильном диапазоне, запишите значение, затем выключите и переведите перемычку в положение LK1. Снова включите питание и убедитесь, что на ЖК-дисплее теперь отображается другое восьмизначное число после калибровки. Это будет F2 – т.е. частота генератора, когда конденсатор C2 подключается параллельно с C1. Поскольку оба конденсатора номинально имеют одинаковое значение, F2 должно быть очень близко к 71% от F1. Это потому, что удвоение емкости уменьшает частоту на коэффициент, равный квадратному корню из двух (т. Е. 1 / √2 = 0,707). Если ваши показания для F2 находятся далеко от 71% от F1, вам может потребоваться заменить C2 на другой конденсатор, значение которого ближе к C1. С другой стороны, если F2 точно такой же, как F1, это говорит о том, что реле RLY1 на самом деле не переключило С2 вообще. Это может быть связано с плохим паяным соединением на одном из контактов RLY1, или вы, возможно, неправильно установили его на плате. Как только вы получите сопоставимые показания для F1 и F2, ваш цифровой LC-метр будет готов для калибровки и использованию. Если у вас нет конденсатора с известным значением для выполнения собственной точной калибровки, вам придется полагаться на собственную авто калибровку прибора (которая в значительной степени зависит от точности конденсатора C2). В этом случае просто удалите все перемычки с LK1 на LK4 и установите плату прибора в корпус.

Точная настройка калибровка цифровой LC-метр

Если у вас есть конденсатор известного значения (потому что вы смогли измерить его с помощью высокоточного измерителя LCR), вы можете легко использовать его для точной настройки калибровки цифрового LC-метра. Сначала включите устройство и дайте ему поработать, а затем он проходит через последовательность «Калибровка» и «C = NN.N pF». После этого подождите минуту или две и нажмите кнопку обнуления (S2), убедившись, что на ЖК-дисплее отображается правильно обнуленное сообщение, т. е. «C = 0,0 пФ». Затем подключите конденсатор известного значения к тестовым клеммам и обратите внимание на индикатор. Он должен быть достаточно близок к значению конденсатора, но может быть несколько высоким или низким. Если показание слишком низкое, установите перемычку LK4 на задней панели и посмотрите на ЖК-дисплей. Каждые 200мс или около того показания будут увеличиваться по мере того, как микроконтроллер PIC регулирует коэффициент масштабирования измерителя в ответ на перемычку. Как только показание достигнет правильного значения, быстро снимите перемычку, чтобы завершить настройку калибровки.

вид печатки измерителя

И наоборот, если показания измерителя для известного конденсатора слишком высокие, выполните ту же процедуру, но с перемычкой в ​​положении LK3. Это заставит микроконтроллер уменьшать масштабный коэффициент измерителя каждый раз, когда он делает измерение, и, как и прежде, идея состоит в том, чтобы убрать перемычку LK3, как только показание достигнет правильного значения. Если вы недостаточно быстро снимаете перемычку вовремя из этих процедур калибровки, микроконтроллер будет «перерегулировать». В этом случае вам просто нужно использовать противоположную процедуру, чтобы вернуть показания к правильному значению. На самом деле, вам может потребоваться несколько раз отрегулировать калибровку взад и вперед, пока вы не убедитесь, что она правильная. Как упоминалось ранее, микроконтроллер PIC сохраняет свой масштабный коэффициент в своей EEPROM после каждого измерения во время этих процедур калибровки. Это означает, что вам нужно выполнить калибровку только один раз. Также обратите внимание, что, когда вы калибруете прибор таким образом, используя конденсатор с известным значением, он также автоматически калибруется для измерений индуктивности. Прошивка для цифровой LC-метр.

 

1 комментарий к “Цифровой LC-метр”

Оставьте комментарий